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Abstract

We propose a generalization of the standard Lax equation defined by means of an arbitrary ac-
tion of a Lie algebra on a matrix differential manifold. We analyze properties of obtained equation
and show examples with physical applications. In particular, certain constructions of Hamiltonian
subclasses of this generalized Lax equation are described. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the early stages of classical mechanics it was the ultimate goal to integrate the equations
of motion of as many physical systems as possible. One of the biggest achievements of
those efforts is associated with works of Jacobi, who applied the method of separation of
variables for Hamilton–Jacobi equations. During this epoch, it appeared possible to integrate
explicitly or by quadratures all differential equations of motion.

Now, thanks to Poincaré we know that most Hamiltonian systems are not integrable and
integrability is something exceptional. However, during the late sixties many new com-
pletely integrable systems were found. Among them there is a big class given by partial
differential equations with infinitely many first integrals. Systems in this class have sev-
eral characteristic properties: they are Hamiltonian ones in an infinite-dimensional function
space, they have families of exact analytic solutions, the most striking of them are soli-
tons. However, the most important property of these kind of equations is their connection
with the spectral problem of linear differential operators. A relation between this class of
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non-linear partial differential equations and differential operators was explained by Lax
[26]. He analyzed the KdV equation

ut = 6uux − uxxx, x, t ∈ R, u(x, t) ∈ R, (1.1)

and observed that if we introduce two differential operators L and N :

L := ∂2
x − u(x, t), N := −4∂3

x + 3(u∂x + ∂xu), ∂t = ∂

∂t
, ∂x = ∂

∂x
, (1.2)

then the operator equation

L̇ = [N,L] (1.3)

is equivalent to KdV equation (1.1). Here [·, ·] denotes the commutator of differential
operators. Then it is crucial to notice that the solution of (1.3) can be written in the form

L(t) = G(t)L0G
−1(t), (1.4)

whereL0 = L(0) is the initial condition andG(t) is the solution of the following initial-value
problem

Ġ(t) = NG(t), G(0) = 1. (1.5)

This implies that if u(t) is a solution of KdV equation, then spectrum of the operator L(t)
does not depend on t . A change of L in time is an isospectral deformation. As a result,
the spectrum of L(t) gives integrals of KdV equation. These considerations explained an
observation of Gardner et al. [18] that eigenvalues of the Schrödinger operator with potential
satisfying KdV equation are first integrals of this equation.

Till now many partial differential equations have been found, they can be written as
Eq. (1.3) with appropriate differential operators N and L (see for instance [6,12]).

The idea of finding integrals of motion as eigenvalues of an associated operator L for
systems with finitely many degrees of freedom

ẋi = F i(t, x1, . . . , xk), i = 1, . . . , k (1.6)

in a phase space P of dimension k was developed by Flaschka [16,17] and Moser [29].
In this case operators L and N are just matrices whose entries depend on the dynamical
variables xi in such a way that differential equations for quantities x1, . . . , xk obtained from
the matrix differential equation (1.3) have exactly the same form as in (1.6). Matrices L and
M are called the Lax pair and Eq. (1.3) the Lax representation of (1.6).

The eigenvalues of L give first integrals of (1.3) and in consequence also (1.6). Instead
of eigenvalues of L, it is more convenient to use other quantities which are functions of the
spectrum of L, e.g. coefficients of the characteristic polynomial of L, or the quantities

Ij := Tr Lj (t), j ∈ N. (1.7)

The existence of the Lax representation of the analysed dynamical system is important for
several reasons:
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• It gives a set of first integrals of the analyzed system. However, their independence and
involutivity (in the case of Hamiltonian systems) must be checked independently.

• In some cases the Lax representation has a form of Hamiltonian matrix differential
equations on appropriate Lie algebra or Lie group. Then, obtained first integrals are
pairwise in involution and this follows directly from the construction.

The application of Lax’s idea allowed to simplify proofs of integrability (sometimes
very complicated) of many systems and gave many new completely integrable systems
both with finitely or infinitely many degrees of freedom. We can mention e.g. classical
Calogero–Sutherland–Moser systems [8,29,31,33], the Toda lattice [42] and its different
generalizations [16,17], the multidimensional Neumann system, equations of geodesic on
an ellipsoid [30], different generalizations of n-dimensional rigid body [38].

Through this paper we restrict ourselves to finite-dimensional systems and, as a conse-
quence, all analyzed operator objects have matrix character. This assumption guarantees
the correctness of definition for all operations and simplifies proofs.

It is worth pointing that Lax equations appear also in quantum mechanics, e.g. the von
Neumann equation

dρ

dt
= − i

�
[H(t), ρ], (1.8)

describing an evolution of quantum systems with finite-dimensional Hilbert space, has this
form. Quantity ρ is the density matrix, and H the Hamiltonian of the system. From Lax’s
form of (1.8), it immediately follows that quantities

Ij := Tr ρj (t), j ∈ N, (1.9)

are first integrals for any quantum system described in the formalism of density matrices.
This fact was not widely known among atomic physicists and even in the 1980s there
appeared papers about n-level systems, in which authors notified a discovery of “a number
of unexpected non-linear constants of motion”, namely functions of the form (1.9).

The importance of the Lax equation in classical mechanics and the von Neumann equation
in quantum mechanics stimulates searches for other matrix differential equations which
have properties similar to the Lax equations. In this work we present a whole class of such
equations.

These generalized equations can be useful both in classical and in quantum mechanics.
In classical mechanics they can be used as representations of systems different from Lax
representations. There is no general recipe for finding a map which transforms the analyzed
system into Lax equation, in general we have to solve a system of algebraic equations
determining entries of L and N . We also apply the same procedure during searches for
another matrix representations. For certain classes of dynamical system it is easier to find
a matrix representation which is different from Lax representation. This means that we can
find another representation with N and L whose entries are simpler functions of dynamical
variables than in any Lax representation.

On the other hand, in quantum mechanics recently there appear many generalizations
of its standard formulation for description of quantum open systems with dissipation, for
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construction of non-linear quantum theory and so on. In these generalizations many new
matrix differential equations appear. The determination of form of equations similar to Lax
equation affords a possibility for a classification of matrix differential equations applied in
quantum mechanics. This classification makes it possible to decide which properties of the
analyzed quantum system are a simple consequence of the form of evolution equations of
applied theory, and which are characteristic only for this system.

As mentioned above, the main aim of this work is to find the most general class of matrix
equations which have properties similar to the Lax equation and to analyze them. At first,
we have to be precise about what “properties similar to the Lax equation” mean and what
geometrical structures are responsible for these properties? It appears that the fundamental
role plays the fact that the construction of the Lax equation has a connection with Lie
groups and Lie algebras theory. The existence of this connection generates all characteristic
properties of the Lax equation. We can explain this connection in the following way. We
denote byM a matrix differential manifold. If N belongs to an appropriate Lie algebra g,
then a map ρ : g×M 	→ TM, defined by

ρ(N,L) = NL − LN, (1.10)

is an example of an action of g onM. In expression (1.10) we recognize the right-hand side
of the Lax equation. We can write the solution of the Lax equation as a family of similarity
transformations indexed by continuous parameter t :

Φ(G(t), L0) = G(t)L0G
−1(t) (1.11)

acting on an initial condition L0. From the point of view of the Lie group theory, the map
Φ(G,L0) = GL0G

−1 is an example of action of G, the Lie group of Lie algebra g, onM.
A possibility of writing a solution by means of an appropriate Lie group action implies that
for any t , L(t) belongs to some orbit of action Φ determined by L0. This fact is of key
importance in the theory of the Lax equation.

The form of the standard Lax equation is related to the so-called adjoint action. Following
this we construct a generalization of the Lax equation by the matrix differential equation
with the right-hand side defined by an arbitrary Lie algebra action. The solution of this
generalized equation can be written in terms of an appropriate Lie group action. Then we
present examples of such Lie algebra actions. In these examples the respective Lie group
actions have the form of transformations acting on a fixed element fromM. We restrict our
attention to the frequently used transformations of this type. Such a choice of the form of
representations makes possible to use results obtained by people working in linear algebra
over linear preserver problems [35]. Then we analyze the obtained equations: in particular
we show sets of first integrals and constructions of Hamiltonian subclasses. We illustrate
our considerations with a number of examples from classical and quantum mechanics.

The order of this paper is the following. In Section 2, we introduce basic notions and
we present our generalization of the Lax equation, then we analyze general properties of
this equation and its geometrical interpretation. In Section 3, we consider examples of our
equation related to particular actions and we present some examples of physical equations
of these types from classical and quantum mechanics. In Sections 4 and 5, we propose
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constructions of Hamiltonian matrix differential equations on a matrix manifold which has
a Lie algebra and a Lie group structure, respectively.

2. Matrix differential equations built by means of an arbitrary Lie algebra action

We begin with setting up notation and terminology. Throughout this paper K denotes R
or C andM a matrix differential manifold. Let g denote a Lie algebra. We assume that it
is associated with a certain closed subgroup G of GL(n,K). By definition, an action ρ of g
onM is a smooth map

ρ : g×M→ TM, (N,L) 	→ ρ(N,L),

such that the induced mapN 	→ ρN , whereρN :M→ TMdefined byρN(L) := ρ(N,L),
is a homomorphism of g into the Lie algebra of vector fields X (M) onM. It means that
ρN fulfills the following conditions:

∀N1, N2 ∈ g, ∀α, β ∈ K, ραN1+βN2 = αρN1 + βρN2 , (2.1a)

∀N1, N2 ∈ g, ρ[N1,N2] = |[ρN1 , ρN2 ]|. (2.1b)

The expression |[XXX,YYY ]| denotes the standard Lie bracket in X (M) which for any XXX(L),

YYY (L) ∈ TLM is defined by

|[XXX,YYY ]|(L) := TXXX(L)(YYY (L)) − TYYY (L)(XXX(L)). (2.2)

Following Abraham and Marsden [1] we denote by TXXX the differential of the mapXXX, which
any L assigns XXX(L). In our examples we meet the following actions of Lie algebra g:

ad(N,L) = NL − LN, cq(N,L) = N̄L − LN, sq(N,L) = NL + LNT,

hq(N,L) = NL + LN†, dq(N1, N2;L) = N1L − LN2. (2.3)

In the last example we have in fact the action of the product g × g onM. The expression
N̄, NT , and N† denotes the complex conjugation, transposition and Hermitian conjugation
of matrix N , respectively.

Now we can write our generalization of the Lax equation

L̇ = ρN(t,L)(L), L(0) = L0, (2.4)

where dependence N = N(t, L) means that we admit arbitrary dependence of entries of N
on entries of L and t . We only assume that N ∈ g for all t .

In order to understand the geometrical interpretation of (2.4), we introduce several notions
from representation theory of Lie groups and Lie algebras. By definition, an action Φ of a
Lie group G onM is a smooth mapping

Φ : G ×M→M, (G,L) 	→ Φ(G,L),
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which satisfies the following conditions:

∀G1,G2 ∈ G, ∀L ∈M, Φ(G2G1, L) = Φ(G2, Φ(G1, L)), (2.5a)

∀G ∈ G, ∀L ∈M, Φ(�, L) = L, (2.5b)

where 1 denotes the identity element in G. Using Φ we can build two new maps ΦL : G →
M and ΦG : M →M defined by G 	→ Φ(G,L) and L 	→ Φ(G,L), respectively. The
two conditions (2.5a) and (2.5b) can now be reformulated by saying that the map G 	→ ΦG

is a homomorphism of the Lie group G into Diff(M), the group of diffeomorphisms ofM.
It is well known that with each Lie group G is associated the Lie algebra g. For our needs

the relation between G and g can be expressed in the following theorem.

Theorem 1 (Watkins and Elsner [43]). If G(t) is the solution of the initial-value problem

Ġ(t) = NG(t), G(0) = 1, (2.6)

then G(t) ∈ G for all t if and only if N ∈ g.
In the above theorem, it is possible to use another initial-value problem

Ġ′(t) = G′(t)N, G(0) = 1, (2.7)

because its solution coincides with the solution of (2.6). Watkins and Elsner [43] generalized
the theorem about the connection between Lie groups and Lie algebras to the case when N

depends on t .

Theorem 2 (Watkins and Elsner, Theorem 5.1T in [43]). Let N(t) be a continuous function
from [0, t1] into Kn×n and let G(t) be the solution of an initial-value problem

Ġ = N(t)G, G(t0) ∈ G (2.8)

on [t0, t1], where G is any closed subgroup of GL(n,K). Then G(t) ∈ G for all t ∈ [t0, t1]
if and only if N(t) ∈ g for all t ∈ [t0, t1].

There exists a companion to Theorem 2 about relations between G and g based on the
next initial-value problem

Ġ′ = G′N(t), G′(t0) ∈ G. (2.9)

Both Lie groups and Lie algebras act onM. Furthermore, we know that every Lie group
has its Lie algebra and that every action of a Lie group induces appropriate action of related
Lie algebra. If we think of action Φ on M as a homomorphism of G into the group of
diffeomorphisms ofM, defined by G 	→ ΦG, we can calculate the differential of this map
at the identity element 1 ∈ G. In this way we obtain the induced homomorphism of Lie
algebra g into the Lie algebra of vector fields onM. It is exactly the map N 	→ ρN , where
ρN is calculated as

ρN(L) = d

ds

∣∣∣∣
s=0

Φexp{sN}(L) = d

ds

∣∣∣∣
s=0

ΦL(e
sN) = T1ΦL(N). (2.10)

Vector ρN is sometimes called an infinitesimal generator of action Φ.
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We see that having a form of Φ we can always calculate ρ but if we have ρ we cannot
in general find its associated action Φ. This last operation is called an integration of a Lie
algebra action. We restrict ourselves to cases when it is possible to integrate actions of a
Lie algebra to obtain its associated Lie group actions. An integration of Lie algebra actions
from examples (2.3) gives the following results:

Ad(G,L) = GLG−1, Cq(G,L) = ḠLG−1, Sq(G,L) = GLGT,

Hq(G,L) = GLG†, Dq(G1,G2;L) = G1LG−1
2 , (2.11)

respectively.
The next key object for our considerations are immersed subsets ofM— the so-called

orbits. If Φ is an action of G on M, the orbit of this action passing through L0 ∈ M is
defined by

OL0 := {ΦG(L0),G ∈ G}. (2.12)

The tangent space at L ∈ OL0 to orbit OL0 is given by

TLOL0 = {ρN(L)|N ∈ g}. (2.13)

As L ∈ OL0 , we can write

L = ΦG(L0) (2.14)

for some G ∈ G. We note that the tangent vectors to the orbit OL0 at L have the same
forms as the right-hand side of our matrix differential equation (2.4). As a consequence,
orbit OL0 is invariant with respect to the phase flow generated by (2.4) and the solution of
the initial-value problem

L̇ = ρN(t)(L), L(0) = L0, (2.15)

where N(t) = N(t, L(t)) is a curve in g, can be written as

L(t) = ΦG(t)(L0). (2.16)

The map Φ is the action of Lie group G associated with action ρ of Lie algebra g. The
function G(t) determines a curve in G. This curve is defined by function N(t), the curve in
g. Now we have to find a relation between these two curves. We know that one curve N(t)

in Lie algebra g generates two curves G(t),G′(t) in the related Lie group G

Ġ(t) = N(t)G(t), G(0) = 1, (2.17a)

Ġ′(t) = G′(t)N(t), G′(0) = 1. (2.17b)

From the introduction we know that for the Lax equation

L̇ = [N(t), L], (2.18)
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this relation has the form (2.17a). Only such relation guarantees that if we differentiate
equation

L(t) = G(t)L0G
−1(t) (2.19)

with respect to t and use (2.17a), then we obtain (2.18). If we apply the second relation
(2.17b), we also obtain the Lax equation but with transformed matrix Ñ = G(t)N(t, L)

G−1(t). The relation (2.17a) is a condition of agreement for (2.18) and (2.19).
In order to find such condition of agreement for Eqs. (2.15) and (2.16), we differentiate

(2.16) with respect to t . We can rewrite the expression (2.16) determining L(t) using the
map ΦL0 :

L(t) = ΦG(t)(L0) = ΦL0(G(t)). (2.20)

Taking derivative with respect to the parameter t , we find that

L̇(t) = TG(t)ΦL0(Ġ(t)), (2.21)

where Ġ(t) ∈ TG(t)G, L̇(t) ∈ TL(t)M.
In order to introduce an action ρ of the associated Lie algebra gwe replace the derivative

TG(t)ΦL0 at point G(t) by the derivative of the same map at � ∈ G. If we use the right
translation RG on G, and we recall (2.20), then we find

ΦL(t)(G
′) = Φ(G′, L(t)) = Φ(G′, ΦG(L0))

= Φ(G′, Φ(G,L0)) = Φ(G′G,L0) = (ΦL0 ◦ RG)(G
′), (2.22)

or in the operator form

ΦL(t) = ΦL0 ◦ RG, (2.23)

where ◦ denotes the superposition of maps. We can compute the derivative of ΦL(t) using
the chain rule:

TΦL(t) = TΦL0 ◦ TRG. (2.24)

From the above relation we obtain the expression

TΦL0 = TΦL(t) ◦ TRG−1 , (2.25)

which we put into (2.21). We find the following expression on L̇(t)

L̇(t) = T1ΦL(t)(TG(t)RG−1(t)(Ġ(t))). (2.26)

Since RG−1(t) is the right translation leading G(t) to the identity element 1 ∈ G and Ġ(t) ∈
TG(t)G, it follows that TG(t)RG−1(t)(Ġ(t)) ∈ T1G = g. Moreover, for G as a subgroup of
GL(n,K), the right translation reduces to right multiplication by the corresponding matrix,
and hence

TG(t)RG−1(t)(Ġ(t)) = Ġ(t)G−1(t) ∈ g.
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It means that there exists such N(t) ∈ g that

Ġ(t)G−1(t) = N(t). (2.27)

In this equation we recognize (2.17a). Now, we can rewrite (2.26) in the following form:

L̇(t) = T1ΦL(t)(N(t)) = ρN(t)(L). (2.28)

The last equality follows from the definition of ρN . We see that the solution of (2.15)
has the form (2.16) if N(t) defines G(t) in the way (2.17a). We can recapitulate above
considerations in the following theorem.

Theorem 3. Let g be a Lie algebra of a certain closed Lie subgroup G of GL(n,K) and ρ

an arbitrary action of g onM. Then the initial-value problem

L̇ = ρN(t,L)(L), L(0) = L0, (2.29)

where L,L0 ∈M, and N = N(t, L) ∈ g has a unique solution which we can write as

L(t) = ΦG(t)(L0), (2.30)

where the function G(t) is the solution of

Ġ(t) = N(t, L)G(t), G(0) = 1. (2.31)

The map Φ is the action of G corresponding to action ρ of g.

Proof. To see that L satisfies (2.30), assume that L̂ = ΦG(t)(L0). To show that L̂ fulfills
(2.29) we differentiate L̂ following calculations (2.21)–(2.28). By the uniqueness of the
solution L̂ = L. �

Now we introduce a notion of a G-invariant function. Function ϕ ∈ C∞(M) is a
G-invariant function of an action Φ of Lie group G if it fulfills the condition

∀G ∈ G, ∀L ∈M, ϕ(ΦG(L)) = ϕ(L). (2.32)

It means that a G-invariant function is constant on the orbits of action Φ.
The G-invariant functions of Φ have a connection with the dynamic described by (2.29).

Theorem 4. The G-invariant functions of Φ are first integrals of (2.29).

Proof. The proof of this theorem is based on the observation that the evolution described
by (2.29) is confined to a certain orbit determined by L0. �
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3. Examples of the generalized Lax equation

In this section we present five examples of our generalized Lax equation. We divide the
first four examples into two classes related to automorphisms and anti-automorphisms of
K

n×n. This procedure is useful because of the following:

1. It enlarges the class of matrix differential equations which we can include in our analysis.
In fact, we can use any automorphism of an arbitrary order and any anti-automorphism
of an arbitrary even order. We present in detail only the most popular automorphisms
and anti-automorphisms.

2. There exists one construction of Hamiltonian equations on a Lie group for any automor-
phism (anti-automorphism).

An automorphism τ of Kn×n is a map τ : Kn×n → K
n×n which fulfills the following

conditions:

∀X1, X2 ∈ Kn×n, τ (X1 + X2) = τ(X1) + τ(X2), (3.1a)

∀X1, X2 ∈ Kn×n, τ (X1X2) = τ(X1)τ (X2). (3.1b)

From (3.1b), we can deduce that for non-singular X

τ(X−1) = τ−1(X). (3.2)

Using any automorphism of Kn×n, we can always build the action of a certain Lie
algebra g

ρτ (N,L) = τ(N)L − LN, N ∈ g, (3.3)

and associated matrix differential equation

dL

dt
= τ(N(t, L))L − LN(t, L), L(0) = L0. (3.4)

An integration of action ρτ gives

Φτ (G,L) = τ(G)LG−1, G ∈ G, (3.5)

and we can write the solution of (3.4) as

L(t) = τ(G(t))L0G
−1(t), (3.6)

where matrix G satisfies the following matrix differential equation on G:

Ġ(t) = N(t, L)G(t), G(0) = 1. (3.7)

If we assume that an automorphism has order q, i.e.

∀X ∈ Kn×n, τ q(X) = X (3.8)

for a certain q ∈ N, then it is easy to obtain the set of G-invariant functions of Φτ and
Theorem 4 yields the following results.
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Theorem 5. Eigenvalues of

τq−1(L(t))τ q−2(L(t)) · · · τ 2(L(t))τ (L(t))L(t)

are first integrals of (3.4).

Proof. We calculate τ s(L(t)) using (3.6) and the properties of an automorphism of
order q

τ s(L(t)) = τ s+1(G(t))τ s(L0)τ
s(G−1(t)), s = 0, 1, . . . , q − 1. (3.9)

From (3.6) and (3.9), it is obvious that for any t ≥ 0, the quantity

τq−1(L(t))τ q−2(L(t)) · · · τ 2(L(t))τ (L(t))L(t)

is connected with

τq−1(L0)τ
q−2(L0) · · · τ 2(L0)τ (L0)L0

by means of a similarity transformation. �

Matrix differential equations of the form (3.4) and a formulation of Theorem 5 can be
found in [4,5], where the author applied another approach without Lie group and Lie algebra
interpretation.

The most popular are two automorphisms of the second order: the identity transformation
τ(X) = X and the complex conjugation τ(X) = X̄. In the first case, Eq. (3.4) transforms
into the well-known Lax equation. In accordance with the above considerations, eigenvalues
of L2 are first integrals of this equation. In fact, eigenvalues of any power of L are constants
during the evolution described by the Lax equation.

Now we present a few physical examples of the Lax equation.

Example 1. Two generalizations of the von Neumann equation:

1. a family of equations introduced by Gisin [19,20]:

ρ̇ = − i

�
[H, ρ] − k

�2
[[H, ρ], ρ] =

[
− i

�
H − k

�2
[H, ρ], ρ

]
, (3.10)

where k is an arbitrary positive parameter,
2. a family of equations introduced by Czachor [10,11]:

ρ̇ = − i

�
[H, ρk], k ∈ N. (3.11)

The Lax’s form of Eq. (3.11) is apparent if we introduce new matrix Ñ :

Ñ :=
k−1∑
j=0

ρjHρk−1−j , (3.12)
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because

[H, ρk] = [Ñ(ρ), ρ].

Example 2. Each completely integrable (in the Liouville’s sense) Hamiltonian system
admits the Lax representation in a neighborhood of its invariant tori [2,24]. This represen-
tation is expressed in the action–angle variables (I1, . . . , Im, ϕ1, . . . , ϕm). We can choose
the following box-diagonal matrices L and N :

L =




I1
. . .

Im

L1
. . .

Lm



, N =




0
. . .

0
N1

. . .

Nm



,

(3.13)

having boxes of the forms

Lj =
(

0 eiϕj

0 0

)
, Nj =

(
iωj 0
0 0

)
, j = 1, . . . , m. (3.14)

We constructed this representation following Kozlov [24]. The eigenvalues of L are
I1, . . . , Im and 0 with multiplicity 2m.

Example 3. Let T be tensor invariant of the valence (1,1) for an autonomous dynamical
system

ẋi = F i(x1, . . . , xk), i = 1, . . . , k. (3.15)

Then equation which defines a tensor invariant

LF T = 0, L : the Lie derivative, (3.16)

has the form of the Lax equation with the following matrices L and N :

Lij := T i
j , Ni

j := ∂F i

∂xj
. (3.17)

The symbols Lij and Ni
j denote the elements in the ith rows and j th columns of the matrices

L and N , respectively. This property for bi-Hamiltonian systems [3] with two different
symplectic forms (from which we can construct the tensor invariant of the valence (1,1))
was observed at the beginning of the 1980s by e.g. de Filippo et al. [14,15], and Cariñena
and Ibort [9].

Furthermore, there exist Lax representations for many autonomous dynamical systems.
For review see [34].
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The next example of the automorphism is the complex conjugation τ(X) = X̄. In this
case Eq. (3.4) transforms into

dL

dt
= N̄(t, L)L − LN(t, L). (3.18)

We can write its solution with the initial condition L(0) = L0 as

L(t) = Ḡ(t)L0G
−1(t), (3.19)

where G(t) satisfies (3.7). From Theorem 5, we conclude that eigenvalues of L̄(t)L(t) are
first integrals of (3.18).

Example 4. For every even integer r = 2s, the dynamical systems

ȧi = −ai

(
mα2s (i)

2s−1∏
k=1

τ k(aαk(i)) − mi

2s−1∏
k=1

τ k(aα−k(i))

)
, r = 2s > 0, (3.20a)

ȧi = −ai

(
mi

2s∏
k=0

τ k(aαk(i)) − mα−2s (i)

2s∏
k=0

τ k(aα−k(i))

)
, r = −2s < 0, (3.20b)

have the matrix representations (3.18). Here τ(X) = X̄, i = 1, . . . , n, α is an arbitrary
permutation of {1, 2, . . . , n} andmi are arbitrary constants. For these two systems, non-zero
entries of matrices L and N are the following:

Liα(i) = ai, Liγ (i) = mi, Niβ(i) = −x̄i . (3.21)

The permutations β and γ are defined as

β = αr, γ = αβ−1. (3.22)

Quantities xi in both cases are equal

xi =
2s−1∏
k=1

τ k(aαk(i)), τ (a) = ā, r = 2s > 0, (3.23a)

xi =
2s∏
k=0

τ k(aα−k(i)), ai = a−1
i , r = −2s < 0, (3.23b)

respectively. This example is due to Bogoyavlensky [4].

The next class of examples is associated with anti-automorphisms κ of Kn×n. Let us
recall that an anti-automorphism κ ofKn×n is a map κ : Kn×n → K

n×n which satisfies the
following conditions:

∀X1, X2 ∈ Kn×n, κ(X1 + X2) = κ(X1) + κ(X2), (3.24a)

∀X1, X2 ∈ Kn×n, κ(X1X2) = κ(X2)κ(X1). (3.24b)
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By means of an arbitrary anti-automorphism, we can construct the action of a certain Lie
algebra g:

ρκ(N,L) = NL + Lκ(N), N ∈ g. (3.25)

An integration of this Lie algebra action gives appropriate Lie group action

Φκ(G,L) = GLκ(G), G ∈ G. (3.26)

In accordance with our general considerations, we can conclude that a solution of the
equation

dL

dt
= N(t, L)L + Lκ(N(t, L)), L(0) = L0, (3.27)

can be written as

L(t) = G(t)L0κ(G(t)). (3.28)

Here G(t) is the solution of the initial-value problem

Ġ(t) = N(t, L)G(t), G(0) = 1. (3.29)

We assume that L0 is non-singular. This assumption guarantees that for any t ≥ 0, matrix
L(t) is non-singular. If we assume that κ has even order q, i.e.

∀X ∈ Kn×n, κq(X) = X (3.30)

for a certain even q ∈ N, then we can identify the set of G-invariant functions of Φκ . Using
the known relation between G-invariant functions of Φ and the dynamics of the matrix
differential equation defined by ρ, we can conclude the following theorem.

Theorem 6. Eigenvalues of

L(t)κ(L−1(t))κ2(L(t))κ3(L−1(t)) · · · κq−2(L(t))κq−1(L−1(t))

are first integrals of (3.27).

Proof. Using (3.28) and properties of an anti-automorphism we obtain

κs(L−1(t)) = κs+1(G−1(t))κs(L−1
0 )κs(G−1(t)) for even s ∈ {0, 2, . . . , q},

κs(L−1(t)) = κs(G−1(t))κs(L−1
0 )κs+1(G−1(t)) for odd s ∈ {1, 3, . . . , q − 1},

κs(L(t)) = κs(G(t))κs(L0)κ
s+1(G(t)) for even s ∈ {0, 2, . . . , q},

κs(L(t)) = κs+1(G(t))κs(L0)κ
s(G(t)) for odd s ∈ {1, 3, . . . , q − 1}. (3.31)

If we define

M(t) = L(t)κ(L−1(t))κ2(L(t))κ3(L−1(t)) · · · κq−2(L(t))κq−1(L−1(t)), (3.32)
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then from the above formulae it follows that

M(t) = G(t)M(0)G−1(t). (3.33)

As a consequence eigenvalues of M(t) are constants during evolution (3.27). �

The properties of Eq. (3.27) for anti-automorphisms of the second order were analyzed
in [36].

An example of the second order anti-automorphism of Kn×n is the transposition of
matrices κ(X) = XT. In this case, Eq. (3.27) transforms into

dL

dt
= N(t, L)L + LNT(t, L), L(0) = L0. (3.34)

We can write its solution as

L(t) = G(t)L0G
T(t), (3.35)

where G(t) is defined by N(t) in the standard way (3.29). From Theorem 6, we conclude
that the eigenvalues of L(L−1)T are first integrals of (3.34). It is worth mentioning that if L
is a symmetric or skew-symmetric matrix, then all eigenvalues of L(L−1)T are equal to 1
or −1, respectively, and in these cases we obtain only trivial first integrals. Now we present
one physical example of the matrix differential equation with transposition.

Example 5. Let T be a tensor invariant of valence (2,0) for an autonomous system

ẋi = F i(xxx), i = 1, . . . , k, (3.36)

then the equation defining tensor invariant

LF T = 0 (3.37)

has the form (3.34) with the following matrices L and N :

Lij = Tij, Ni
j := ∂F i

∂xj
. (3.38)

Here the symbol Ni
j denotes the element in the ith row and j th column of N . An analogous

statement is valid for tensor invariant of valence (0,2) with N given by

Ni
j := −∂F j

∂xi
. (3.39)

A relation between tensor invariants of valence (2,0) (or (0,2)) and the matrix differential
equation with transposition was observed in [36].

The next example of the second order anti-automorphism is the Hermitian conjugation
κ(X) = X†. Now Eq. (3.27) has the form

dL

dt
= N(t, L)L + LN†(t, L), L(0) = L0, (3.40)
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and we can write its solution as

L(t) = G(t)L0G
†(t). (3.41)

Matrix G(t) is determined by N(t) in the standard way (3.29).

Example 6. Lamb [25,44] introduced the following generalization of the von Neumann
equation:

ρ̇(t) = − i

�
[H, ρ(t)] − 1

2
{ρ(t), Γ }, (3.42)

for description of certain excited states of hydrogen atom. Later this equation was applied
in the theory of masers and lasers. In (3.42) {·, ·} denotes anti-commutator of matrices, H
is a Hamiltonian of the system and Γ is a Hermitian matrix modeling dissipation. If we
introduce a new non-Hermitian matrix H̃

H̃ = − i

�
H − 1

2
Γ, (3.43)

then (3.42) can be written in the form (3.40). We present this example in order to draw
attention to the fact that sometimes all first integrals calculated from Theorem 6 are trivial.
In this example it follows from the fact that the density matrix is always Hermitian and
ρ(ρ−1)† = 1.

By means of an arbitrary automorphism τ and an arbitrary anti-automorphism κ ofKn×n

we can build two actions of g onM. The first has the form

ρτκ(N,L) = τ(N)L + Lκ(N). (3.44)

After integration we have appropriate action of G onM

Φτκ(G,L) = τ(G)Lκ(G). (3.45)

Since it is difficult to find G-invariant functions of action Φτκ , we restrict ourselves to cases
when τ and κ have order two. Then the following theorem describes properties of matrix
differential equation (3.44).

Theorem 7. Let τ and κ be an arbitrary second order automorphism and an anti-
automorphism of Kn×n, respectively, and commute with each other. Then the solution of

L̇ = τ(N(t, L))L + Lκ(N(t, L)), L(0) = L0, (3.46)

can be written as

L(t) = τ(G(t))L0κ(G(t)), (3.47)

where G(t) is the solution of the following initial-value problem:

Ġ(t) = N(t, L)G(t), G(0) = 1. (3.48)

Furthermore, eigenvalues of κ(L)τ(L−1) are first integrals of (3.46).
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Proof. The first part of the theorem follows from the forms of actions (3.44) and (3.45).
From (3.47) and properties of τ and κ we obtain

κ(L) = Gκ(L0)κ(τ (G)), L−1 = κ−1(G)L−1
0 τ−1(G),

τ (L−1) = τ(κ−1(G))τ(L−1
0 )G−1. (3.49)

Using the above formulae, we calculate

κ(L(t))τ (L−1(t)) = G(t)κ(L0)κ(τ (G(t)))τ (κ−1(G(t)))τ (L−1
0 )G−1(t)

= G(t)κ(L0)κ(τ (G(t)))κ−1(τ (G(t)))τ (L−1
0 )G−1(t)

= G(t)κ(L0)τ (L
−1
0 )G−1(t), (3.50)

and now it is obvious that eigenvalues of κ(L(t))τ (L−1(t)) are constants. �

The second type of action ρ with any τ and κ is the following:

ρτκ(N,L) = NL + Lκ(τ(N)). (3.51)

An integration of this action gives

Φτκ(G,L) = GLκ(τ(G)). (3.52)

From general considerations about matrix differential equations defined by Lie group and
Lie algebra actions, we can deduce the next theorem.

Theorem 8. Let τ and κ be any second order automorphism and anti-automorphism of
K

n×n, respectively, and commute with each other. Then the solution of

L̇ = N(t, L)L + Lκ(τ(N(t, L))) (3.53)

with the initial condition L(0) = L0 has the following form:

L(t) = G(t)L0κ(τ(G(t))). (3.54)

Here G(t) is the solution of the initial-value problem on G:

Ġ(t) = N(t, L)G(t), G(0) = 1. (3.55)

Furthermore, eigenvalues of Lκ(τ(L−1)) are first integrals of (3.46).

Proof. The proof is analogous to that of the previous theorem. �

It is worth noticing that in constructions of all analyzed equations defined by means of
τ (of form (3.4)), κ (of form (3.27)) and a pair τ and κ (of form (3.46) and (3.53)), we can
sometimes use automorphisms and anti-automorphisms of certain subsets ofKn×n. Namely,
ifM has a structure of Lie group G of acting Lie algebra g, then we can use automorphisms
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and anti-automorphisms of g. A map τ : g→ g is an automorphism of Lie algebra g if it
satisfies relations

∀N1, N2 ∈ g, τ (N1 + N2) = τ(N1) + τ(N2), (3.56a)

∀N1, N2 ∈ g, τ ([N1, N2]) = [τ(N1), τ (N2)]. (3.56b)

For an anti-automorphism κ : g→ g, the second condition is replaced by the following:

∀N1, N2 ∈ g, κ([N1, N2]) = −[κ(N1), κ(N2)]. (3.57)

Automorphisms and anti-automorphisms of Lie algebra g induce automorphisms and anti-
automorphisms of its Lie group G, respectively. Arbitrary elements τ(N), κ(N) ∈ g define
elements τ(G), κ(G) ∈ G by relations

d

dt
τ (G) = τ(N)τ(G), τ (G(0)) = 1, (3.58a)

d

dt
κ(G) = κ(N)κ(G), κ(G(0)) = 1, (3.58b)

respectively. An automorphism τ : G → G of Lie group G satisfies the condition

∀G1,G2 ∈ G, τ (G1G2) = τ(G1)τ (G2). (3.59)

The analogous relation for an anti-automorphism κ : G → G has the form

∀G1,G2 ∈ G, κ(G1G2) = κ(G2)κ(G1). (3.60)

Also if M has a structure of any associative algebra, we can use automorphisms and
anti-automorphisms of this algebra.

As the last example we consider the matrix differential equation defined by the following
action of the product g× g onM:

ρ(N1, N2;L) = N1L − LN2, N1, N2 ∈ g. (3.61)

It is the most general type of action that we consider in this paper and all previous examples
considered are particular cases of this.

Integration of this action gives

Φ(G1,G2;L) = G1LG2, G1,G2 ∈ G, (3.62)

where G1,G2 ∈ G corresponds to N1, N2 ∈ g, respectively. Matrix differential equation
built by means of (3.61) has the form

L̇ = N1(t, L)L − LN2(t, L), L(0) = L0. (3.63)

We can write its solution as

L(t) = G1(t)L0G
−1
2 (t), (3.64)
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where the flows G1(t) and G2(t) are solutions of the initial-value problems:

Ġ1(t) = N1(t, L)G1(t), G1(0) = 1, (3.65a)

Ġ2(t) = N2(t, L)G2(t), G2(0) = 1. (3.65b)

Without additional assumptions on N1, N2, we do not know how to find G-invariant
functions of Φ defined in (3.62). In the next two theorems, we write conditions which
guarantee that determinant and singular values of L(t) are first integrals. We recall that the
singular values of L are the non-negative square roots of the eigenvalues of L†L (in the
case of complex matrices) or LTL (in the case of real matrices).

Theorem 9. If in (3.63) matrices N1, N2 are chosen in such a way that G1 and G2 defined
in (3.65a) and (3.65b) satisfy the relation

det(G1(t)G
−1
2 (t)) = 1, (3.66)

then the determinant of L(t) is a first integral of (3.63).

Proof. From form (3.64) of L(t) and elementary properties of the deteminant of matrix
we obtain

det(L(t)) = det(G1(t)) det(L0) det(G−1
2 (t))

= det(G1(t)G
−1
2 (t)) det(L0) = det(L0). (3.67)

The last equality is valid if and only if condition (3.66) is fulfilled. �

Condition (3.66) means that G1(t) and G2(t) have the same determinant. For example, it
is the case when G1(t) and G2(t) belong to SL(n,K). Then N1 and N2 have to be traceless
matrices.

The next theorem concerns matrix differential equations having singular values as first
integrals.

Theorem 10. If in (3.63) matrices N1, N2 belong to o(n,R) or u(n,C), then singular
values of L(t) are first integrals of (3.63).

Proof (for the case of complex matrices). If we assume thatN1 andN2 are skew-Hermitian,
then G1(t) and G2(t) as solutions of (3.65a) and (3.65b) are unitary:

G
†
1 (t) = G−1

1 (t), G
†
2 (t) = G−1

2 (t). (3.68)

From the above relations, we obtain

L†(t)L(t) = G2(t)L
†
0L0G

−1
2 (t) (3.69)

and it is obvious that singular values of L are constants. �
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Example 7. A Lie-admissible [13] generalization of the Heisenberg equation for observable
A has the form

Ȧ = − i

�
(ARH0 − H0SA). (3.70)

Here H0 is a Hermitian matrix and matrices R and S satisfy the condition R �= ±S.
From the above considerations we see that if matricesR andS are Hermitian and commute

with H0, then singular values of A are constants.

We showed a number of matrix differential equations. These equations can appear in
different branches of physics in a direct way (if objects in the theory have a matrix character)
or in an indirect way (if matrix differential equations appear as matrix representations of
dynamical systems). In the second case, we have many problems:

1. How to find a matrix representation?
2. Is this representation unique?
3. Is a level of difficulties during searches of different representations of analyzed system

the same?

Regarding the first problem, we know systematic methods of mapping dynamical systems
into matrix differential equations of required form only in a few cases. In the case of the
Lax equation, they are dynamical systems with known tensor invariant of valence (1,1).
It is possible to find such tensors, e.g. for bi-Hamiltonian systems. We also showed that
is possible mapping in a systematic way the dynamical systems with a tensor invariant of
valence (0,2) or (2,0) into the matrix equation with transposition. It is worth noticing that
mapping the dynamical system into the matrix differential equation of the required form is
not equivalent to finding the matrix representation of this type. Not always from the matrix
equation can we obtain all differential equations of the analyzed dynamical system.

We mentioned that all Hamiltonian systems integrable in the Liouville sense have known
Lax representations (in action–angle variables). In fact, for such systems we can construct in
a systematic way all presented representations: with the complex conjugation, transposition,
Hermitian conjugation, with two skew-symmetric or skew-Hermitian matrices [37], in the
action–angle variables.

The Lax representations have also systems described by the projection method introduced
by Olshanetsky and Perelomov [32] and this follows directly from constructions applied in
this method.

For other systems in order to construct required matrix representation, we have to pos-
tulate a form of entries of matrices L and N (or L,N1, N2) as particular functions of
dynamical variables x1, . . . , xk with undeterminate coefficients. Using evolution equations
for dynamical variables, we obtain the system of algebraic equations for undeterminate
coefficients. This system does not always have a non-trivial solution, and furthermore, not
always a non-trivial solution gives a representation which produce non-trivial first integrals.
Moreover, as mentioned above, sometimes from obtained matrix differential equation, we
cannot reconstruct all differential equations of the analyzed dynamical system.
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Regarding the second problem, matrix representations of dynamical systems are not
unique. In [27] it was shown that if a dynamical system has one Lax representation, then
we can produce infinite sequence of the next Lax representation by means of Kronecker
product. In fact, it is true also for all presented matrix representations [37]. If the system has
one matrix representation of a certain type, then it has infinitely many representations of
the same type. Additionally, sometimes the system has matrix representations of different
types. We illustrate this statement with some examples.

Example 8. The equations of motion of the Toda lattice [42] of two particles in the Flaschka
variables have the form [16]

ḃ1 = −2a2
1, ḃ2 = 2a2

1, ȧ1 = a1(b1 − b2). (3.71)

This system has the well-known Lax representation:

L̃ =
(
b1 a1

a1 b2

)
, Ñ =

(
0 a1

−a1 0

)
, (3.72)

which gives two polynomial first integrals

I1 = b1 + b2, I2 = b2
1 + b2

2 + 2a2
1 . (3.73)

For this system, we can calculate the matrix representation with the transposition

L =
(

b1 − 3
2a1 2b1 − b2 + 2a1

b1 − 2b2 + 2a1 4b2 + 6a1

)
, N =

(
0 1

2a1

−2a1 0

)
, (3.74)

which also gives two first integrals.

Example 9. Generalized Halphen system [22] has the form

ẋ1 = a1x
2
1 + (λ + a1)[x2x3 − x1(x2 + x3)],

ẋ2 = a2x
2
2 + (λ + a2)[x3x1 − x2(x3 + x1)],

ẋ3 = a3x
2
3 + (λ + a3)[x1x2 − x3(x1 + x2)], (3.75)

where (λ, a1, a2, a3) are parameters. If (λ, a1, a2, a3) = (1, 0, 0, 0), then (3.75) coincides
with the well-known Halphen system [21]. In [28] it was stated that if

λ = − 1
2 (a1 + a2 + a3), (3.76)

then the generalized Halphen system is integrable because it possesses two rational (degree
zero) first integrals:

I1 = x1 − x2

x2 − x3
, I2 = x2 − x3

x3 − x1
. (3.77)

Despite functional dependence of these first integrals,

I2 = − 1

1 + I1
, (3.78)



238 M. Przybylska / Journal of Geometry and Physics 38 (2001) 217–252

the general conclusion about integrability remains valid. As the second first integral inde-
pendent of I1, we can choose the following rational function of degree 1:

I3 = (a1 − a2 − a3)x2x3 − (a1 − a2 + a3)x1x3 − (a1 + a2 − a3)x1x2

x1 − x2
. (3.79)

The generalized Halphen system has many matrix representations with transposition, e.g.

L =
(

x1 −x2 + x3

−2x1 + x2 0

)
,

N = 1

4

(
(a1 + a2 + a3)x1 −(a1 − a2 − a3)(x1 − x2)

0 (3a1 − a2 − a3)x1 + 4(a2x2 + a3x3)

)
. (3.80)

The calculation of trace of L(L−1)T gives the rational (degree 0) first integral which is the
function of I1:

Tr(L(L−1)T) = 2 − 4(x1 − x2)
2

(x2 − x3)(−2x1 + x2 + x3)
= 1 + 2I1 + 1

1 + 2I1
. (3.81)

If we try to find the Lax representation of this system with entries linear in dynamical
variables, then all these representations give only trivial first integrals. It is obvious because
such Lax representation with linear entries gives only polynomial first integrals and the
generalized Halphen system does not have any polynomial first integral. If we want to
construct the Lax rapresentation with non-trivial first integrals we have to assume that entries
of L and N depend rationally on dynamical variables. But then the number of equations
determining entries of matrices L and N grows and calculations become more complicated.

Based on the last example, we see that sometimes it is easier to find the useful represen-
tation with transposition. By useful representation we mean a matrix representation giving
non-trivial first integrals.

Now we try to answer the third question. We can conjecture that there are systems for
which it is easier to find the Lax representation generating non-trivial first integrals. But there
are systems for which it is easier to find a useful matrix representation of another type (e.g.
with transposition). Sometimes representations of different types can give non-trivial first
integrals (see Example 8). The formulation “a representation easier to find” means matrix
representation with entries of L and N in a set of simpler functions of dynamical variables.

4. Hamiltonian matrix differential equations on a Lie algebra

In this section and the next section, we consider constructions of Hamiltonian subclasses
of matrix differential equations defined by actions of Lie algebras. In this section we consider
a case when M = g, thus M is in particular a vector space. We assume that our action
ρ : g×M→M is a linear transformation also in the second argument. We call a linear
action of a Lie algebra on a certain vector space a representation of this Lie algebra, and



M. Przybylska / Journal of Geometry and Physics 38 (2001) 217–252 239

similarly we call a linear action of a Lie group a representation of this Lie group. In fact,
all actions presented in examples (2.3) and (2.11) are linear in both arguments.

At first we introduce the next notions from representation theory. Let g. denote the algebra
dual to g. By definition, a co-representation Φ. : G × g. → g. of Lie group G on g. is the
object dual to Φ : G × g→ g, i.e.

〈Φ.(G, ξ),N〉 ≡ 〈Φ.
G(ξ),N〉 := 〈ξ,ΦG−1(N)〉, (4.1)

where G ∈ G, ξ ∈ g., N ∈ g and 〈·, ·〉 : g. × g → R denotes the duality map between
g. and g. Having co-representation Φ. of Lie group G, we can calculate the appropriate
co-representation ρ. of Lie algebra g analogously as for actions of Lie groups and Lie
algebras:

ρ.(N, ξ) ≡ ρ.
N(ξ) := d

dt

∣∣∣∣
t=0

Φ.
exp{tN}(ξ), (4.2)

where N ∈ g, ξ ∈ g..
In order to construct Hamiltonian equations, we have to define a Poisson bracket and

choose Hamiltonian functions. On C∞(g.) there exists a natural Poisson bracket, the
so-called Berezin–Kostant–Kirillov–Souriou bracket (BKKS bracket) [23]. Let L ∈ g.,
ϕ,ψ ∈ C∞(g.). Then this bracket has the form

{ϕ,ψ}(L) := 〈L, [dψ(L), dϕ(L)]〉, (4.3)

where differentials dϕ(L), dψ(L) belong to (g.). ∼= g.
As a Hamiltonian function we can use an arbitrary function ϕ from C∞(g.). The BKKS

bracket generates the following Hamiltonian vector field:

L̇ = ad.dϕ(L)(L). (4.4)

If function ϕ belongs to the set of G-invariant functions of the co-adjoint representation
Ad., i.e.

∀G ∈ G, ϕ(Ad.G(L)) = ϕ(L), (4.5)

then we obtain trivial dynamics. It is obvious that from an infinitesimal version of the above
invariance condition,

∀N ∈ g, 〈N, ad.dϕ(L)(L)〉 = 0. (4.6)

As a consequence, G-invariant functions of co-adjoint representation are Casimir functions
of BKKS bracket.

In order to generate non-trivial dynamics with G-invariant Hamiltonian, it is necessary in
the definition of BKKS bracket to replace the commutator by another Lie bracket in g. This
bracket can be built by means of a certain linear operator R ∈ End(g) in the following way:

∀N1, N2 ∈ g, [N1, N2]R := [R(N1), N2] + [N1, R(N2)]. (4.7)
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A skew-symmetry and linearity of [·, ·]R is obvious from its definition. From Jacobi identity,
we obtain the following condition [39]:

∀N1, N2, N3 ∈ g,
[BR(N1, N2), N3] + [BR(N2, N3), N1] + [BR(N3, N1), N2] = 0, (4.8)

where BR(N1, N2) is defined by

BR(N1, N2) = [R(N1), R(N2)] − R([N1, N2]R). (4.9)

Operators which satisfy this relation are called classical R matrices. Condition (4.8) is
very complicated and usually two types of sufficient conditions are analyzed: the classical
Yang–Baxter identity, in short (CYBE)

BR(N1, N2) = 0, (4.10)

and the modified Yang–Baxter identity, in short (mCYBE)

BR(N1, N2) = α[N1, N2], (4.11)

where α is a real parameter. The BKKS bracket with [·, ·]R
{ϕ,ψ}R(L) := 〈L, [dψ(L), dϕ(L)]R〉, (4.12)

and any G-invariant Hamiltonian function ϕ gives the following equation on g.:

L̇ = ad.R(dϕ(L))(L). (4.13)

If g admits a non-degenerate invariant bilinear form (·, ·), then this equation takes Lax’s
form

L̇ = [R(grad ϕ(L)), L]. (4.14)

The invariance condition means that for any N1, N2, N3 ∈ g,

([N1, N2], N3) + (N2, [N1, N3]) = 0. (4.15)

The existence of this invariant form makes it possible to identify elements from g. with
elements from g, the co-adjoint representation with the adjoint representation, differentials
of functions with gradients and G-invariant functions of the co-adjoint representation with
G-invariant functions of the adjoint representation. An example of such a form is the Killing
form for semisimple Lie algebras.

Additionally BKKS bracket with [·, ·]R for any two G-invariant functions of adjoint
representation is equal to zero.

Following work of Semenov-Tian-Shansky [39], we want to build Hamiltonian equations
of the form

L̇ = ρN(L), (4.16)
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where ρ is an arbitrary representation of g on g. A certain solution of this task was proposed
by Bordemann [7]. We use some ideas of Bordemman but our analysis is different (closer
to the oryginal work of Semenov-Tian-Shansky).

At first we construct Hamiltonian equations on g.:

L̇ = ρ.
N(L), L ∈ g., (4.17)

where ρ. is a co-representation of g.. We need to define a new Poisson bracket on C∞(g.).
We have two possibilities:

• we can construct a completely new Poisson bracket different from BKKS bracket
depending on the form of ρ,

• do not change the general form of BKKS bracket but replace the commutator appearing
in (4.3) by another map [·, ·]ρ : g× g 	→ g depending on a form of ρ and satisfying all
conditions determining a Lie bracket.

We apply the second approach and we postulate the following form of this new Lie
bracket:

[N1, N2]ρ = ρN1(N2) − ρN2(N1). (4.18)

A skew-symmetry and linearity of this Lie bracket in g is obvious from its definition. In
order to analyze Jacobi identity, we obtain some useful relation for representation ρ. We
recall the first condition in the definition of an action of a Lie algebra on a manifold

∀N1, N2 ∈ g, ρ[N1,N2] = |[ρN1 , ρN2 ]|. (4.19)

In the case of representation, this condition transforms into

∀L,N1, N2 ∈ g, ρ[N1,N2](L) = ρN1(ρN2(L)) − ρN2(ρN1(L)). (4.20)

From Jacobi identity by means of (4.20), we obtain one condition restricting the form of
representation ρ:∑

(i,j,k)∈S
ρ{ρNi

(Nj )−ρNj
(Ni)}(Nk) + ρ[Nj ,Ni ](Nk) = 0, (4.21)

where S is a set of cyclic permutations of {1, 2, 3}.
Now we can check the form of Hamiltonian equations generated by this new bracket

{ϕ,ψ}ρ(L) := 〈L, [dψ(L), dϕ(L)]ρ〉. (4.22)

We choose an arbitrary G-invariant function ϕ of the co-representation Φ.:

∀G ∈ G, ϕ(Φ.
G(L)) = ϕ(L), (4.23)

as a Hamiltonian. An infinitesimal version of this condition has the form

∀N ∈ g, 0 = d

dt

∣∣∣∣
t=0

ϕ(Φ.
exp{tN}(L)) = 〈dϕ, ρ.

N(L)〉. (4.24)
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Using the relation between Φ. and Φ given in (4.1), we can obtain an appropriate relation
between ρ. and ρ:

〈ρ∗
N1
(ξ), N2〉 = −〈ξ, ρN1(N2)〉. (4.25)

By means of the above relation, we can rewrite condition (4.24) as

∀N ∈ g, 〈L, ρN(dϕ)〉 = 0. (4.26)

We calculate the Poisson bracket {ϕ,ψ}ρ with an arbitrary G-invariant function ϕ of
co-representation Φ. as a Hamiltonian:

{ϕ,ψ}ρ = 〈L, [dψ, dϕ]ρ〉 = 〈L, ρdψ(dϕ)〉 − 〈L, ρdϕ(dψ)〉
= −〈L, ρdϕ(dψ)〉 = 〈ρ∗

dϕ(L), dψ〉. (4.27)

As a result, we obtain a Hamiltonian equation of the form (4.17) with N = dϕ.
It is worth noticing that if representation ρ is symmetric or skew-symmetric, i.e.

∀N1, N2 ∈ g, ρN1(N2) = ±ρN2(N1), (4.28)

then Poisson bracket {·, ·}ρ with the G-invariant Hamiltonian ϕ generates only trivial dy-
namics. In a symmetric case the Lie bracket [·, ·]ρ is identically equal to zero and in a
skew-symmetric case the triviality of dynamics follows fromG-invariant character of Hamil-
tonian. We can recapitulate obtained results in the following theorem.

Theorem 11. If a representation ρ : g × g → g satisfies (4.21), then a Hamiltonian
equation on g. generated by Poisson bracket {·, ·}ρ with the G-invariant with respect to Φ.

Hamiltonian ϕ has the form (4.17). Moreover, any two G-invariant functions are pairwise
in involution with respect to this bracket.

Proof. The first part of the theorem is obvious from the above considerations. The second
part is easy to check the following calculations (4.27) and using G-invariance of ϕ. �

If the analyzed representation does not satisfy relation (4.21) or is symmetric (skew-
symmetric), then we can try to build another Lie bracket (and as a consequence a Poisson
bracket) using the counterpart of a classical R matrix. We denote it by r and call a classical
r matrix. By definition, a classical r matrix is a linear operator r ∈ End(g) which generates
in g a structure of Lie algebra by means of the bracket

∀N1, N2 ∈ g, [N1, N2]B = ρr(N1)(N2) − ρr(N2)(N1). (4.29)

We call this bracket the Bordemann bracket because it has a structure similar to the bracket
from his work [7]. The linearity and skew-symmetry is obvious by definition. Now we pass
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to Jacobi identity. Its particular terms are the following:

[[N1, N2]B,N3]B = ρr([N1,N2]B)(N3) − ρr(N3)([N1, N2]B)

= ρr(ρr(N1)(N2))(N3) − ρr(ρr(N2)(N1))(N3) − ρr(N3)(ρr(N1)(N2))

+ ρr(N3)(ρr(N2)(N1)),

[[N2, N3]B,N1]B = ρr([N2,N3]B)(N1) − ρr(N1)([N2, N3]B)

= ρr(ρr(N2)(N3))(N1) − ρr(ρr(N3)(N2))(N1) − ρr(N1)(ρr(N2)(N3))

+ ρr(N1)(ρr(N3)(N2)),

[[N3, N1]B,N2]B = ρr([N3,N1]B)(N2) − ρr(N2)([N3, N1]B)

= ρr(ρr(N3)(N1))(N2) − ρr(ρr(N1)(N3))(N2) − ρr(N2)(ρr(N3)(N1))

+ ρr(N2)(ρr(N1)(N3)). (4.30)

If we define quantity Br as

Br(N1, N2) := [r(N1), r(N2)] − r([N1, N2]B)

= [r(N1), r(N2)] − r(ρr(N1)(N2)) − r(ρr(N2)(N1)), (4.31)

and calculate −ρBr(N1,N2)(N3) using representation identity (4.20), then we obtain

−ρBr(N1,N2)(N3) = −ρ[r(N1),r(N2)](N3) + ρr(ρr(N1)(N2))(N3) − ρr(ρr(N2)(N1))(N3)

= −ρr(N1)(ρr(N2)(N3)) + ρr(N2)(ρr(N1)(N3)) + ρr(ρr(N1)(N2))(N3)

−ρr(ρr(N2)(N1))(N3). (4.32)

Looking at the obtained expression, we recognize four terms from the right-hand sides
of (4.30). If we repeat calculations for −ρBr(N2,N3)(N1) and −ρBr(N3,N1)(N2), then we
conclude that it is possible to write Jacobi identity as

ρBr(N1,N2)(N3) + ρBr(N2,N3)(N1) + ρBr(N3,N1)(N2) = 0. (4.33)

As a consequence the bracket [·, ·]B defined in (4.29) is a Lie bracket in g if and only if
for any N1, N2, N3 ∈ g, the condition (4.33) is satisfied. We can construct two sufficient
conditions, counterparts of (CYBE) and (mCYBE)

∀N1, N2 ∈ g, Br(N1, N2) = 0, (4.34a)

∀N1, N2 ∈ g, Br(N1, N2) = [D(N1),D(N2)], (4.34b)

where on mapping D : g→ g we have to put such conditions which guarantee that (4.33)
is satisfied identically.

Theorem 12. If for representation ρ, we find a map D which satisfies two conditions:

ρD(N1)(N2) = −ρD(N2)(N1), (4.35a)

ρD(N1)(ρD(N2)(N3)) + ρD(N2)(ρD(N3)(N1)) + ρD(N3)(ρD(N1)(N2)) = 0, (4.35b)
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or one condition

ρD(N1)(N2) = ρD(N2)(N1) (4.36)

then equality (4.33) is satisfied identically.

Proof. We insert (4.34b) into (4.33) and use (4.20). We obtain

ρ[D(N1),D(N2)](N3) + ρ[D(N2),D(N3)](N1) + ρ[D(N3),D(N1)](N2)

= ρD(N1)(ρD(N2)(N3)) − ρD(N2)(ρD(N1)(N3)) + ρD(N2)(ρD(N3)(N1))

−ρD(N3)(ρD(N2)(N1)) + ρD(N3)(ρD(N1)(N2)) − ρD(N1)(ρD(N3)(N2)). (4.37)

If D satisfies (4.36), then the first term reduces with sixth, second with third, fourth with
fifth and we obtain 0. If D satisfies (4.35a), then the right-hand side of (4.37) transforms
into

2{ρD(N1)(ρD(N2)(N3)) + ρD(N2)(ρD(N3)(N1)) + ρD(N3)(ρD(N1)(N2))}, (4.38)

which is equal to zero when (4.35b) is fulfilled. �

A first class of conditions onD, i.e. (4.35a) and (4.35b) corresponds to Bordemann results
[7]. But we obtain also the second one given by only one equation (4.36).

If for our representation ρ of g on g we find a map D, which fulfills (4.35a) and (4.35b)
or (4.36), and next we find a classical r matrix satisfying (4.34b) with the calculated form
of D, then we can construct Hamiltonian equations on g.. As a Poisson bracket we take

{ϕ,ψ}B(L) = 〈L, [dψ, dϕ]B〉, (4.39)

where [·, ·]B is defined in (4.29), and as a Hamiltonian an arbitrary G-invariant function ϕ

of co-representation Φ.. Calculations of the above bracket yield

〈L, [dψ, dϕ]B〉 = 〈L, ρr(dψ)(dϕ)〉 − 〈L, ρr(dϕ)(dψ)〉 = −〈L, ρr(dϕ)(dψ)〉
= 〈dψ, ρ.

r(dϕ)(L)〉, (4.40)

and we conclude that a Hamiltonian equation has the form (4.17) with N = r(dϕ).
From above calculation it is obvious that the Poisson bracket (4.39) of any twoG-invariant

functions Φ. is equal to zero.
We showed two constructions of Hamiltonian equations of required form (4.17) on g..

But we want to obtain appropriate Hamiltonian equations on g. In order to make this, we
need a scalar product invariant with respect to ρ:

∀N1, N2, N3 ∈ g, (ρN1(N2), N3) + (N2, ρN1(N3)) = 0. (4.41)

This product makes it possible to identify elements from g. with elements with g, co-
representation ρ. with representation ρ, differentials of functions with gradients, and G-
invariant functions of Φ. with G-invariant functions of Φ. Now we repeat calculations of
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Poisson brackets with Lie bracket [·, ·]ρ and [·, ·]B presented in (4.27) and (4.40), respec-
tively, using the above-mentioned identifications. As a Hamiltonian function, we take an
arbitrary G-invariant with respect to Φ function ϕ. Now an infinitesimal version of the
invariance condition has the form

∀N ∈ g, (grad ϕ, ρN(L)) = 0. (4.42)

Using the above condition, we obtain

〈L, [dϕ, dψ]ρ〉 = (L, ρgrad ψ(grad ϕ)) − (L, ρgrad ϕ(grad ψ))

= −(ρgrad ψ(L), grad ϕ) + (ρgrad ϕ(L), grad ψ)

= (ρgrad ϕ(L), grad ψ),

〈L, [dϕ, dψ]B〉 = (L, ρr(grad ψ)(grad ϕ)) − (L, ρr(grad ϕ)(grad ψ))

= −(ρr(grad ψ)(L), grad ϕ) + (ρr(grad ϕ)(L), grad ψ)

= (ρr(grad ϕ)(L), grad ψ). (4.43)

In this way, we obtain two families of Hamiltonian equations of the required form on g:

L̇ = ρgrad ϕ(L)(L), (4.44a)

L̇ = ρr(grad ϕ(L))(L), (4.44b)

respectively.
Recapitulating, we have two constructions of Hamiltonian equations of the form (4.16).

If representation ρ satisfies condition (4.21), then we can construct Hamiltonian equation
(4.44a). For symmetric or skew-symmetric representations ρ : g× g→ g this construction
gives only trivial results. The second construction consists of two steps: at first we have to find
a map D, and then find a classical matrix r . In both constructions we need a scalar product
invariant with respect to ρ. Till now all necessary elements of this construction have been
known only for the adjoint representation. This representation is skew-symmetric and only
the second construction gives non-trivial results. In this case D(N) = N , the counterpart of
(mCYBE) transforms exactly in (mCYBE), and if we take as g any semisimple Lie algebra,
then we have an invariant scalar product, namely the Killing form.

5. Hamiltonian matrix differential equations on a Lie group

In this section we construct Hamiltonian matrix differential equations of the forms ana-
lyzed in the previous sections on Lie group G. We assume that G is such a Lie group that its
Lie algebra is equipped with a non-degenerate scalar product (·, ·) invariant with respect to
the adjoint action

∀N1, N2, N3 ∈ g, ([N1, N2], N3) + (N2, [N1, N3]) = 0. (5.1)

The above condition is an infinitesimal version of

∀G ∈ G, (AdG(N2),AdG(N3)) = (N2, N3). (5.2)
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We construct separately Hamiltonian equations which have the form of the Lax equation
and the forms of matrix differential equations defined by an arbitrary automorphism and
anti-automorphism of Lie algebra g. We make this using one type of Poisson bracket and
choosing as Hamiltonians G-invariant functions with respect to appropriate actions.

These construction for the Lax equation and the equation with an arbitrary automorphism
are known from works of Semenov-Tian-Shansky [39,40]. We present them here for com-
pleteness and because in original works proofs are not explicitly presented or they are made
using advanced methods.

For any ϕ ∈ C∞(G), we define left and right gradients Dψ,D′ψ ∈ g, respectively, as

(Dψ(L),N) = d

dt

∣∣∣∣
t=0

ψ(etNL), (5.3a)

(D′ψ(L),N) = d

dt

∣∣∣∣
t=0

ψ(L etN), (5.3b)

where N ∈ g. From definitions it is obvious that for any ψ ∈ C∞(G), gradients Dψ and
D′ψ are related by equality

D′ψ(L) = AdL−1(Dψ(L)). (5.4)

In order to construct a Poisson structure we need a unitary classical R matrix, (which
satisfies the standard (mCYBE)). The unitarity means that R ∈ End(g) satisfies

∀N1, N2 ∈ g, (R(N1), N2) + (N1, R(N2)) = 0. (5.5)

By means of left and right gradients, and the unitary classical R matrix, we can construct
the Poisson bracket for any ϕ,ψ ∈ C∞(G) in the following way:

{ϕ,ψ}S(L) := 1
2 (R(Dϕ(L)),Dψ(L)) − 1

2 (R(D
′ϕ(L)),D′ψ(L)). (5.6)

It was introduced by Sklyanin [41]. The skew-symmetry and linearity is obvious from its
definition and the proof of Jacobi identity can be found in Semenov-Tian-Shansky [40].
This bracket is well defined also on associative algebras.

Now we find the Hamiltonian vector field generated by this Poisson bracket and Hamil-
tonian ϕ ∈ C∞(G). Using (5.4), we can rewrite (5.6) as

{ϕ,ψ}S(L) = 1
2 (R(Dϕ(L)) − AdL(R(D

′ϕ(L)))︸ ︷︷ ︸,Dψ(L)). (5.7)

The marked expression belongs to the tangent space to G at identity element of G. We
have to translate it to point L ∈ G. We can do it by means of differentials of right or left
translations on G. Appropriate Hamiltonian equations generated by translated vector fields
have forms

L̇ = 1
2R(Dϕ(L))L − 1

2 LR(D′ϕ(L)), (5.8a)

L̇ = 1
2 LR(Dϕ(L)) − 1

2L
2R(D′ϕ(L))L−1, (5.8b)

respectively. In further considerations we will analyze only (5.8a) because only it gives
matrix differential equations related to particular Lie algebra actions analyzed in Section 3.
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Let ϕ be an arbitrary G-invariant function of adjoint representation of G, i.e.

ϕ(AdG(L)) = ϕ(L), (5.9)

We denote the set of such functions by IAd(G). From the infinitesimal version of the above
condition

0 = d

dt

∣∣∣∣
t=0

ϕ(etNL e−tN) = (Dϕ(L),N) − (D′ϕ(L),N), (5.10)

we obtain the relation between the left and the right gradient of ϕ ∈ IAd(G):

D′ϕ(L) = Dϕ(L). (5.11)

Additionally, it is easy to show that

Dϕ(AdG(L0)) = AdG(Dϕ(L0)) (5.12)

for any G ∈ G and ϕ ∈ IAd(G).
By means of the classical R matrix, we define two new mappings

R+ = 1
2 (R + 1), R− = 1

2 (R − 1). (5.13)

Using the above relations we can prove the following theorem.

Theorem 13. Letϕ ∈ IAd(G)and Lie algebragbe equipped with non-degenerate, invariant
(with respect to ad) scalar product. Let R ∈ End(g) be a unitary classical R matrix. Then,

1. the Hamiltonian equation (5.8a) transforms into the Lax equation

L̇ = N(L)L − LN(L), N(L) = 1
2R(Dϕ(L)), (5.14)

2. any two functions from IAd(G) are in involution with respect to the Sklyanin bracket
(5.6),

3. each equation

L̇ = N+(L)L − LN+(L), N+(L) = R+(Dϕ(L)), (5.15a)

L̇ = N−(L)L − LN−(L), N−(L) = R−(Dϕ(L)), (5.15b)

is equivalent to (5.14),
4. the solution of (5.14) with the initial condition L(0) = L0 can be written in two forms:

L(t) = G+(t)L0G
−1
+ (t) = G−(t)L0G

−1
− (t), (5.16)

where flows F(t) and G(t) are solutions of the initial-value problems:

Ġ+ = N+(L)G+, G+(0) = 1, (5.17a)

Ġ− = N−(L)G−, G−(0) = 1. (5.17b)
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Moreover, these flows are related to the solution L(t) of (5.14) with the initial condition
L(0) = L0 in the following way:

G−1
− (t)G+(t) = etDϕ(L0), (5.18a)

G+(t) eDϕ(L0)G−1
+ (t) = G−(t) eDϕ(L0)G−1

− (t) = eDϕ(L(t)). (5.18b)

Proof.

1. It is sufficient to apply (5.11) to (5.8a).
2. For any two functions ϕ1, ϕ2 ∈ IAd(G), we obtain

{ϕ1, ϕ2}S = 1
2 (R(Dϕ1),Dϕ2) − 1

2 (R(D
′ϕ1),D

′ϕ2)

= 1
2 (R(Dϕ1),Dϕ2) − 1

2 (R(D
′ϕ1),Dϕ2)

= − 1
2 (Dϕ1, R(Dϕ2)) + 1

2 (D
′ϕ1, R(Dϕ2)) = 0.

3. To prove the equivalence (5.15a) with (5.14), we add to the right-hand side of Poisson
bracket (5.6) two terms which do not change this bracket

1
2 (Dϕ,Dψ) − 1

2 (D
′ϕ,Dψ) = 0, 1

2 (Dϕ,D′ψ) − 1
2 (D

′ϕ,D′ψ) = 0. (5.19)

We obtain

{ϕ,ψ}S(L) = 1
2 (R(Dϕ(L)),Dψ(L)) − 1

2 (R(D
′ϕ(L)),D′ψ(L))

+ 1
2 (Dϕ(L),Dψ(L)) − 1

2 (D
′ϕ(L),Dψ(L))

− 1
2 (D

′ϕ(L),D′ψ(L)) + 1
2 (Dϕ(L),D′ψ(L))

= (R+(Dϕ(L)),Dψ(L)) − (R+(D′ϕ(L)),D′ψ(L))

− 1
2 (D

′ϕ(L),Dψ(L)) + 1
2 (Dϕ(L),D′ψ(L))

= (R+(Dϕ(L)),Dψ(L)) − (R+(D′ϕ(L)),D′ψ(L))

− 1
2 (Dϕ(L),Dψ(L)) + 1

2 (Dϕ(L),D′ψ(L))

= (R+(Dϕ(L)),Dψ(L)) − (R+(D′ϕ(L)),D′ψ(L)),

from which follows (5.15a). Analogously, we obtain the equivalence of (5.15b) with
(5.14). Additionally, adding (5.15a) to (5.15b) and using definitions of R− and R+ we
obtain (5.14).

4. The existence of two forms of solutions of (5.14) is obvious from the equivalence of
(5.14) with (5.15a) and (5.15b). In order to prove (5.18a) we observe that etDϕ(L0) satisfies
the initial-value problem

Ẏ (t) = Dϕ(L0)Y (t), Y (0) = 1. (5.20)

Let Z(t) = G−1
− (t)G+(t). Then Z(0) = 1. We differentiate Z with respect to t :

dZ(t)

dt
= d

dt
(G−1

− (t)G+(t))

= G−1
− (t)(−N− + N+)G+(t) = G−1

− (t)Dϕ(L(t))G−(t)G−1
− (t)G+(t)

= Dϕ(L0)G
−1
− (t)G+(t) = Dϕ(L0)Z(t). (5.21)
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By the uniqueness theorem for initial-value problems, it follows that Z(t) = etDϕ(L0). In
order to obtain (5.18b), we apply (5.12) and (5.16) to etDϕ(L0). �

Now we find a form of Hamiltonian equation generated by Poisson bracket (5.6) with an
arbitrary G-invariant function ϕ of the action Φτ

G(L) = τ(G)LG−1 as a Hamiltonian. Here
τ denotes an arbitrary automorphism of g. We recall that an automorphism of a Lie algebra
induces an appropriate automorphism of its Lie group.

We denote by Iτ (G) the set ofG-invariant functions ofΦτ .We assume that automorphism
τ is orthogonal with respect to the scalar product in g, i.e.

(τ (N1), τ (N2)) = (N1, N2). (5.22)

Using the infinitesimal version of the G-invariance condition and orthogonality of the scalar
product, we obtain the relation between Dϕ and D′ϕ:

Dϕ(L) = τ(D′ϕ(L)). (5.23)

It is easy to check that the following equality

∀L0,G ∈ G, D′ϕ(τ(G)L0G
−1) = AdG(D

′ϕ(L0)), (5.24)

is valid for any ϕ ∈ Iτ (G). Now we are able to prove the following theorem.

Theorem 14. Letϕ ∈ Iτ (G) and Lie algebra g be equipped with a non-degenerate invariant
scalar product. Additionally, suppose that orthogonal automorphism τ of g commutes with
a unitary classical R matrix. Then

1. Hamiltonian equation (5.8a) has the form

L̇ = τ(N(L))L − LN, N(L) = 1
2R(D

′ϕ(L)), (5.25)

2. any two functions ϕ1, ϕ2 ∈ Iτ (G) are in involution with respect to the Sklyanin bracket
(5.6),

3. each equation

L̇ = τ(N+(L))L − LN+, N+(L) = R+(D′ϕ(L)), (5.26a)

L̇ = τ(N−(L))L − LN−, N−(L) = R−(D′ϕ(L)), (5.26b)

is equivalent to (5.25),
4. the solution of (5.25) with the initial condition L(0) = L0 can be written in two forms

L(t) = τ(G+(t))L0G
−1
+ (t) = τ(G−(t))L0G

−1
− (t), (5.27)

where flows F(t) and G(t) are solutions of the following initial-value problems:

Ġ+ = N+(L)G+, G+(0) = 1, (5.28a)

Ġ− = N−(L)G−, G−(0) = 1. (5.28b)
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Moreover, these flows are related to the solution L(t) of (5.25) with the initial condition
L(0) = L0 in the following way:

G−1
− (t)G+(t) = etDϕ(L0), (5.29a)

G+(t) eDϕ(L0)G−1
+ (t) = G−(t) eDϕ(L0) G−1

− (t) = eDϕ(L(t)). (5.29b)

Proof. Proofs of particular parts of this theorem are analogous to those of the previous
theorem. �

Finally we analyze Hamiltonian equations generated by a Hamilton function ϕ which
is G-invariant with respect to Φκ(G,L) = GLκ(G). We denote the set of these invariant
functions by Iκ(G). Additionally, we suppose that anti-automorphism κ of g is orthogonal
with respect to the non-degenerate invariant scalar product in g and commutes with the
unitary classical R matrix. Then it is easy to obtain two relations

D′ϕ(L) = κ(Dϕ(L)), (5.30a)

∀L0,G ∈ G, Dϕ(GL0κ(G)) = AdG(Dϕ(L0)), (5.30b)

valid for any G-invariant function ϕ ∈ Iκ(G). These equalities are useful in the proof of the
next theorem.

Theorem 15. Letϕ ∈ Iκ(G) and Lie algebra g be equipped with a non-degenerate invariant
scalar product. Additionally, suppose that orthogonal anti-automorphism κ of g commutes
with a unitary classical R matrix. Then

1. Hamiltonian equation (5.8a) has the form

L̇ = N(L)L + Lκ(N(L)), N(L) = 1
2R(Dϕ(L)), (5.31)

2. any two functions ϕ1, ϕ2 ∈ Iκ(G) are in involution with respect to the Sklyanin bracket
(5.6),

3. each equation

L̇ = N+(L)L + Lκ(N+(L)), N+(L) = R+(Dϕ(L)), (5.32a)

L̇ = N−(L)L + Lκ(N−(L)), N−(L) = R−(Dϕ(L)), (5.32b)

is equivalent to (5.31),
4. the solution of (5.31) with the initial condition L(0) = L0 can be written in two forms

L(t) = G+(t)L0κ(G+(t)) = G−(t)L0κ(G−(t)), (5.33)

where flows F(t) and G(t) are solutions of the following initial-value problems

Ġ+ = N+(L)G+, G+(0) = 1, (5.34a)

Ġ− = N−(L)G−, G−(0) = 1. (5.34b)
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Moreover, these flows are related to the solution L(t) of (5.31) with the initial condition
L(0) = L0 in the following way:

G−1
− (t)G+(t) = etDϕ(L0), (5.35a)

G+(t) eDϕ(L0) G−1
+ (t) = G−(t) eDϕ(L0) G−1

− (t) = eDϕ(L(t)). (5.35b)

Proof. The proof is analogous to those of two previous theorems. �
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